Scientific publications

In this page you will be able to find the scientific publications related to GuestXR project published by partners.

A case study in phenomenology of visual experience with retinal prosthesis versus visual-to-auditory sensory substitution


by Amber Maimon, Or Yizhar, Galit Buchs, Benedetta Heimler, & Amir Amedi


The phenomenology of the blind has provided an age-old, unparalleled means of exploring the enigmatic link between the brain and mind. This paper delves into the unique phenomenological experience of a man who became blind in adulthood. He subsequently underwent both an Argus II retinal prosthesis implant and training, and extensive training on the EyeMusic visual to auditory sensory substitution device (SSD), thereby becoming the first reported case to date of dual proficiency with both devices. He offers a firsthand account into what he considers the great potential of combining sensory substitution devices with visual prostheses as part of a complete visual restoration protocol. While the Argus II retinal prosthesis alone provided him with immediate visual percepts by way of electrically stimulated phosphenes elicited by the device, the EyeMusic SSD requires extensive training from the onset. Yet following the extensive training program with the EyeMusic sensory substitution device, our subject reports that the sensory substitution device allowed him to experience a richer, more complex perceptual experience, that felt more “second nature” to him, while the Argus II prosthesis (which also requires training) did not allow him to achieve the same levels of automaticity and transparency. Following long-term use of the EyeMusic SSD, our subject reported that visual percepts representing mainly, but not limited to, colors portrayed by the EyeMusic SSD are elicited in association with auditory stimuli, indicating the acquisition of a high level of automaticity. Finally, the case study indicates an additive benefit to the combination of both devices on the user’s subjective phenomenological visual experience.

Congenitally blind adults can learn to identify face-shapes via auditory sensory substitution and successfully generalize some of the learned features

Scientific reports, 2022

by Roni Arbel; Benedetta Heimler; Amir Amedi


Unlike sighted individuals, congenitally blind individuals have little to no experience with face shapes. Instead, they rely on non-shape cues, such as voices, to perform character identification. The extent to which face-shape perception can be learned in adulthood via a different sensory modality (i.e., not vision) remains poorly explored. We used a visual-to-auditory Sensory Substitution Device (SSD) that enables conversion of visual images to the auditory modality while preserving their visual characteristics. Expert SSD users were systematically taught to identify cartoon faces via audition. Following a tailored training program lasting ~ 12 h, congenitally blind participants successfully identified six trained faces with high accuracy.

Furthermore, they effectively generalized their identification to the untrained, inverted orientation of the learned faces. Finally, after completing the extensive 12-h training program, participants learned six new faces within 2 additional hours of training, suggesting internalization of face-identification processes. Our results document for the first time that facial features can be processed through audition, even in the absence of visual experience across the lifespan. Overall, these findings have important implications for both non-visual object recognition and visual rehabilitation practices and prompt the study of the neural processes underlying auditory face perception in the absence of vision.

Effects of training and using an audio-tactile sensory substitution device on speech-in-noise understanding

Scientific Reports, 2022

by K. Cieśla; T. Wolak; A. Lorens; M. Mentzel; H. Skarżyński; Amir Amedi


Understanding speech in background noise is challenging. Wearing face-masks, imposed by the COVID19-pandemics, makes it even harder. We developed a multi-sensory setup, including a sensory substitution device (SSD) that can deliver speech simultaneously through audition and as vibrations on the fingertips. The vibrations correspond to low frequencies extracted from the speech input. We trained two groups of non-native English speakers in understanding distorted speech in noise. After a short session (30–45 min) of repeating sentences, with or without concurrent matching vibrations, we showed comparable mean group improvement of 14–16 dB in Speech Reception Threshold (SRT) in two test conditions, i.e., when the participants were asked to repeat sentences only from hearing and also when matching vibrations on fingertips were present. This is a very strong effect, if one considers that a 10 dB difference corresponds to doubling of the perceived loudness. The number of sentence repetitions needed for both types of training to complete the task was comparable. Meanwhile, the mean group SNR for the audio-tactile training (14.7 ± 8.7) was significantly lower (harder) than for the auditory training (23.9 ± 11.8), which indicates a potential facilitating effect of the added vibrations. In addition, both before and after training most of the participants (70–80%) showed better performance (by mean 4–6 dB) in speech-in-noise understanding when the audio sentences were accompanied with matching vibrations. This is the same magnitude of multisensory benefit that we reported, with no training at all, in our previous study using the same experimental procedures. After training, performance in this test condition was also best in both groups (SRT ~ 2 dB). The least significant effect of both training types was found in the third test condition, i.e. when participants were repeating sentences accompanied with non-matching tactile vibrations and the performance in this condition was also poorest after training. The results indicate that both types of training may remove some level of difficulty in sound perception, which might enable a more proper use of speech inputs delivered via vibrotactile stimulation. We discuss the implications of these novel findings with respect to basic science. In particular, we show that even in adulthood, i.e. long after the classical “critical periods” of development have passed, a new pairing between a certain computation (here, speech processing) and an atypical sensory modality (here, touch) can be established and trained, and that this process can be rapid and intuitive. We further present possible applications of our training program and the SSD for auditory rehabilitation in patients with hearing (and sight) deficits, as well as healthy individuals in suboptimal acoustic situations.